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Abstract

A new scenario of substorm onset and current disruption and the correspond-
ing physical processes are presented based on the AMPTE/CCE spacecraft ob-
servation and a kinetic ballooning instability theory. During the growth phase of
substorms the plasma β is larger than unity (20 ≥ β ≥ 1). Toward the end of
late growth phase the plasma β increases from 20 to ≥ 50 in ∼ 3 minutes and a
low frequency instability with a wave period of 50− 75 sec is excited and grows
exponentially to a large amplitude at the current disruption onset. At the onset,
higher frequency instabilities are excited so that the plasma and electromagnetic
field form a turbulent state. Plasma transport takes place to modify the ambient
pressure profile so that the ambient magnetic field recovers from a tail-like ge-
ometry to a dipole-like geometry. A kinetic ballooning instability (KBI) theory
is proposed to explain the low frequency instability (frequency and growth rate)
and its observed high β threshold (βc ≥ 50). Based on the ideal MHD theory
βMHD

c ' 1 and the ballooning modes are predicted to be unstable during the
growth phase, which is inconsistent with observation that no appreciable mag-
netic field fluctuation is observed. The enhancement of βc over βMHD

c is due to
the kinetic effects of trapped electrons and finite ion Larmor radii which provide
a large stabilizing effect by producing a large parallel electric field and hence a
parallel current that greatly enhances the stabilizing effect of field line tension.
As a result, βc is greatly increased over βMHD

c by a factor proportional to the
ratio of the total electron density to the un-trapped electron density, ne/neu,
which is ≥ O(102) in the near-Earth plasma sheet. The wave-ion magnetic drift
resonance effect produces a perturbed resonant ion velocity distribution centered
at a duskward velocity roughly equal to the average ion magnetic drift velocity.
This perturbed ion distribution explains the enhanced duskward ion flux during
the explosive growth phase and can excite higher frequency instabilities (such as
the cross-field current instability).
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1 Introduction

A critical issue in the magnetospheric physics is the substorm process, in particular,

the substorm onset and current disruption. Recently a new scenario of the substorm

onset and current disruption has been presented [Cheng and Lui(1998)] based on the

AMPTE/CCE spacecraft observations. In the late substorm growth phase the plasma β

at the substorm onset site in the near Earth plasma sheet region is typically∼ 20 at ∼ 10

minutes prior to the current disruption onset. At ∼ 2 minutes before the substorm onset

β increases to ≥ 50 and the pressure becomes isotropic [Lui et al.(1992)]. Therefore,

too much plasma energy is stored in the plasma sheet and the excess energy must be

release via instabilities and associated plasma and magnetic field transport. We have

found that a low frequency instability with a wave period of ∼ 50 − 75 sec is excited

and grows exponentially to a large amplitude with δB/B ≥ 0.5 at the onset. The

half wave period of the instability before the onset was previously called “explosive

growth phase” [Ohtani et al.(1992), Ohtani et al.(1995)] which lasts ∼ 30 sec with an

enhanced duskward ion flux centered at ∼ 500 km/s (below the ion thermal velocity of

≈ 1000 km/s)[Lui(1996)]. This enhanced cross-tail ion drift population is responsible for

exciting higher frequency instabilities (with wave periods of 15 sec, 10, sec, 5 sec, etc.)

which together with the low frequency instability last throughout the current disruption

phase to form a strong turbulence for ∼ 4 − 5 minutes. During the turbulent state

anomalously fast plasma transport takes place to modify the average pressure profile so

that the plasma sheet recovers to a lower energy state and the ambient magnetic field

relaxes from a tail-like geometry to a dipole-like geometry.

Previously the ideal MHD ballooning instability has been proposed to explain the

substorm current disruption and explosive growth phase [Roux et al.(1991), Liu(1997),

Voronkov et al.(1997)]. The ballooning instability results from the release of free energy

of nonuniform plasma pressure with a gradient in the same direction as the magnetic

field curvature. Analogous to the expansion of a balloon due to higher inner air pressure

around weak surface tension spot, the ballooning instability will relax higher plasma

pressure and hence move the magnetic field lines across the large field curvature surface

area toward the weaker pressure direction. Theories of ballooning modes based on the

ideal MHD model would predict a purely growing instability when the plasma β is

above a low critical value βMHD
c . In a dipole field or a more tail-like field βMHD

c ' 1

with Lp = 1RE. This is inconsistent with the AMPTE/CCE spacecraft observation

that no appreciable magnetic field fluctuations were observed throughout most of the

growth phase even when plasma β values are above βMHD
c (typically 40 ≥ β ≥ 1).

In this paper we present a kinetic theory of ballooning instability (KBI) which

shows that kinetic effects of trapped particle dynamics, finite ion Larmor radii (FLR)
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and wave-particle resonances are important in determining the stability of ballooning

modes. The kinetic theory of ballooning modes provides a proper understanding of two

key physical processes of substorm current disruption and subsequent magnetic field

dipolarization: (1) the excitation mechanism and the high plasma β threshold (≥ 50) of

the low frequency instability that underlines the explosive growth phase; (2) the physical

mechanism of the enhanced duskward ion flux that occurs only during the explosive

growth phase and leads to excitation of higher frequency instabilities. In particular, we

show that the kinetic effects of trapped electrons and finite ion Larmor radii produce

a large parallel electric field and hence a parallel current that greatly enhances the

stabilizing effect of field line tension. As a result, the β threshold (βc) for KBI is

greatly increased over the ideal MHD ballooning instability threshold by ≥ O(102),

which is consistent with the AMPTE/CCE observation of high βc (βc ∼ 50) for exciting

a low frequency instability just before the substorm onset. The kinetic ballooning

instability has a real frequency on the order of ion diamagnetic drift frequency which is

associated with ion FLR effects. Moreover, the wave-ion magnetic drift resonance effect

produces a perturbed resonant ion velocity distribution centered at a duskward velocity

which roughly equals to the average ion magnetic drift velocity. This perturbed ion

distribution explains the enhanced duskward ion flux during the explosive growth phase

and can excite higher frequency instabilities (such as the cross-field current instability).

In the following we first describe the derivation of the eigenmode equations for

kinetic ballooning instability based on the gyrokinetic formulation. We then present

the physical process of the kinetic ballooning instability and its application to under-

stand the critical substorm processes. Then, we discuss the difficulties in attempting

to explain the substorm process by the magnetic reconnection based on the near-Earth

neutral line model [Nagai and Kamide(1995)]. Finally, a summary is given.

2 Gyrokinetic Formulation

In order to properly address kinetic effects on the ballooning instability we will em-

ploy the gyrokinetic formulation to describe the particle dynamics. We shall consider

collisionless plasmas with isotropic pressure. The particle velocity distribution func-

tion is assumed to have no appreciable bulk flow velocity. Quasi-static equilibria with

isotropic pressure are determined by the system of equations in the rationalized EMU

unit: j ×B = ∇P , ∇×B = J, and ∇ ·B = 0. For three-dimensional magnetospheric

equilibria the magnetic field can be expressed in a straight field line (ψ, α, θ) flux co-

ordinate as B = ∇ψ ×∇α, where ψ is the magnetic flux function, α = φ − δ(ψ, α, θ),

θ is a generalized poloidal angle, φ is the azimuthal angle in the cylindrical (R, φ, Z)

coordinate, and δ(ψ, α, θ) is periodic in both φ and θ. The intersection of constant ψ
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and α surfaces defines the magnetic field line. The flux coordinate system is in general

not orthogonal, and ∇ψ · ∇θ 6= 0, ∇ψ · ∇α 6= 0, and ∇α · ∇θ 6= 0. Within a magnetic

surface the poloidal flux is Ψ =
∫
d3xb ·∇θ/2π = 2πψ. Note that α is a cyclic function

with a period of 2π for all constant ψ surfaces.

We consider low frequency perturbations with ω << ωci and k⊥L >> k‖L > 1,

where ω is the wave frequency, ωci is the ion cyclotron frequency, L is the equilibrium

scale length, and k‖,⊥ are the parallel and perpendicular wave numbers, respectively.

Because the electron mass is much smaller than the ion mass and the temperatures of

electrons and ions are of the same order, the electron thermal velocity is much larger

than the ion thermal velocity. We consider electromagnetic perturbations with the

orderings: k⊥ρi ∼ O(1) and vthe > (ω/k‖) > vthi [Cheng(1982b), Cheng(1982a)], where

ρi is the ion gyroradius. With these orderings the following kinetic effects must be

considered: trapped electron dynamics, ion FLR effect and wave-particle resonance

with ω − ωdi = 0, where ωdi is the ion magnetic drift frequency. We shall obtain

approximate solutions of the perturbed particle distributions based on the gyrokinetic

formulation [Cheng et al.(1995)].

We assume a WKB eikonal representation for perturbed quantities, i.e., δf(~x,~v, t) =

δf(s,k⊥, ~v, t) exp [i (
∫
d~x⊥ · k⊥ − ωt)]. Including full gyroradius effects the perturbed

particle distribution function can be expressed in terms of the rationalized MKS unit

as δf = (q/M)∂F/∂E[(ωT
? /ω)Φ − (1 − ωT

? /ω)
(
1− J0e

iδL
)

Φ] + geiδL, where M is the

particle mass, q is the particle charge, the guiding center particle equilibrium distribu-

tion is assumed to be F = F (E, ψ) so that the equilibrium pressure is a function of ψ

and E only, δL = k × v · B/ωcB, Jl is the l-th order Bessel function of the argument

k⊥v⊥/ωc, ωc = qB/M is the cyclotron frequency, B is the magnetic field intensity, Φ

is the perturbed electrostatic potential, and g is the non-adiabatic part of the per-

turbed distribution function. Based on the WKB-ballooning formalism the gyrokinetic

equation for g in the low frequency (ω � ωc) limit is given by

(ω − ωd + iv‖ · ∇‖)g = − q

M

∂F

∂E
(
1− ωT

?

ω

)

×
[(
ωdΦ− iv‖ · ∇‖Ψ

)
J0 +

ωv⊥
k⊥

J1δB‖
]
, (1)

where Ψ is the parallel perturbed electric field potential with E‖ = −∇‖Ψ, δB‖ is

the parallel perturbed magnetic field, ωT
? = B× k⊥ · ∇F/(Bωc∂F/∂E), ωd = k⊥ · vd

is the magnetic drift frequency, vd = (B/Bωc) × (v2
‖κ + µ∇B) is the magnetic drift

velocity, and κ is the magnetic field curvature. Note that the vector potential, defined

by A = A‖−iA⊥B×k⊥/(Bk⊥), is related to Φ, Ψ and δB‖ by ωA‖ = −i∇‖(Φ−Ψ) and

δB‖ = k⊥A⊥. We also note that the gyrokinetic formulation is still valid for the case

ρi ∼ L⊥ if the the magnetic drift frequency is replaced by the pitch angle average value
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to account for the non-conservation of the magnetic moment [Hurricane et al.(1994)].

For electrons we shall neglect gyro-radius effects and consider |v‖∇‖| � ω, ωde.

Clearly, trapped and un-trapped electrons have very different parallel dynamics. The

un-trapped electron dynamics is mainly determined by its fast parallel transit motion,

and to the lowest order in (ω/|v‖∇‖|) the perturbed un-trapped electron density is given

by [Cheng(1982a)]

δneu =
eNeu

Te

[
ω∗e
ω

Φ +
(
1− ω∗e

ω

)
Ψ
]
, (2)

where ω∗e = B ×∇Ne · k⊥Te/(BmeωceNe) is the electron diamagnetic drift frequency,

Neu/Ne = 1 − [1− B(s)/Bi]
1/2 is the fraction of un-trapped electron at the field line

location s, Bi is the maximum magnetic field along a field line. Near the minimum B

location Neu/Ne ' B(s)/2Bi � 1. Note that the first term in Eq. (2) is the adiabatic

response and the second term is due to the parallel electric field.

The trapped electron dynamics is mainly determined by its fast parallel bounce

motion and to the lowest order in (ω/ωbe)

δnet ' eNet

Te

[
ω∗e
ω

Φ +
(
1− ω∗e

ω

)
∆Ψ

]
+ δn̂et, (3)

where Net/Ne = [1− B(s)/Bi]
1/2 is the fraction of trapped electron,

∆ =
∫

tr
d3v(Fe/Net)

[
1− 〈(ω − ωde)Ψ〉

〈ω − ωde〉Ψ
]
, (4)

δn̂et = −
∫

tr
d3v(eFe/Te)[(ω − ωT

?e)/(ω − 〈ωde〉)]
〈
(ωde/ω)Φ + v2

⊥δB‖/2ωce

〉
, (5)

and 〈ωde〉 is the trapped particle orbit average of ωde. Note that the contribution due

to the parallel electric field is small because ∆ � 1 for trapped electrons. Thus, it is

difficult to change the trapped electron density by the parallel electric field because of

their fast bounce motion relative to the parallel wave motion.

To obtain perturbed ion distribution function we assume that ω, ωdi � |v‖∇‖|, and

the non-adiabatic perturbed distribution function is given by

gi ' eFi

Ti

ω − ωT
?i

ω − ωdi

(
ωdiJ0Φ

ω
+
v⊥J1δB‖
k⊥

)
. (6)

Note that the ion dynamics is mainly determined by its perpendicular motion and the

perturbed ion density is given by

δni = −eNi

Ti

[
ω∗i
ω

Φ +
(
1− ω∗pi

ω

)
(1− Γ) Φ

]
+ δn̂i, (7)
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where ω∗i = B ×∇Ni · k⊥Ti/(BmiωciNi), ω∗pi = B × ∇Pi · k⊥Ti/(BmiωciPi), Γ(bi) =

I0(bi) exp(−bi), bi = k2
⊥Ti/Miω

2
ci = k2

⊥ρ
2
i /2, I0 is the modified Bessel function of the

zeroth order, and δn̂i =
∫
d3vgiJ0.

¿From the charge quasi-neutrality condition we obtain the parallel electric field

potential (
Neu +Net∆

Ne

)
Ψ = −Te

Ti

ω − ω∗pi

ω − ω∗e
(1− Γ) Φ

+
Te

eNe

(δn̂i − δn̂e) (8)

In comparison with the limit without trapped electron effects, the parallel electric field

is enhanced byNe/(Neu+Net∆). Making use of the parallel Ampere’s law the perturbed

parallel current is given by δJ‖ ' i∇2
⊥∇‖ (Φ−Ψ) /ω, which represents the enhancement

of stabilizing field line tension due to the enhanced parallel electric field resulting from

effects of trapped electron dynamics and ion FLR.

To obtain the eigenmode equation for ballooning instability we follow the derivation

presented in the paper by [Cheng et al.(1995)]. By multiplying the gyrokinetic equation

with particle charge, integrating it over the velocity space and summing it over all

species, and making use of the parallel component of the Ampere’s law we obtain

B · ∇
[
k2
⊥
B2

B · ∇(Φ−Ψ)

]
+
ω(ω − ω∗pi)

V 2
A

1− Γ(bi)

ρ2
i /2

Φ

+
B× κ · k⊥

B2


2B×∇P · k⊥

B2
Φ− ω

∑
j

δp̂j


 = 0 (9)

where VA = B/(niMi)
1/2 is the Alfvén speed, and the non-adiabatic perturbed pressures

for each particle species are given by δp̂j = Mj

∫
d3v[(1−ωT

?j/ω)(1−J2
0 )Φ+gjJ0](v

2
⊥/2+

v2
‖). Note that the perturbed total pressure balance relation, B · δB + δP⊥ ' 0, is used

for low frequency instabilities with ω � k⊥VA [Cheng(1991), Cheng and Qian(1994),

Cheng et al.(1995)].

Equations (8) and (9) form a coupled set of kinetic ballooning eigenmode equations

for solving Φ and Ψ along the field lines and the eigenvalue ω. We also need to obtain

the non-adiabatic contributions of perturbed electron density, δn̂et and δn̂i, and per-

turbed particle pressures, δp̂‖ and δp̂⊥. The eigenmode equations include kinetic effects

of trapped electron dynamics, parallel electric field, full ion FLR, and wave-particle

resonances.

3 Kinetic Ballooning Instability

If we further consider the ordering ω � ωde, ωdi, the non-adiabatic density and pressure

responses in Eqs. (8) and (9) can be neglected and we obtain a kinetic ballooning mode
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equation that retains the trapped electron and ion FLR effects, and the local dispersion

relation for KBI is approximately given by

ω(ω − ω∗pi)

(1 + bi)V
2

A

' Sk2
‖ −

2κ · ∇P
B2

, (10)

where S = 1 + (bi/(1 + bi))NeTe/(Neu +Net∆)Ti � 1, and we have adopted the Padé

approximation 1 − Γ ' bi/(1 + bi). The real frequency of KBI is ωr ' ω∗pi/2 and the

critical β is given by

βc ' SβMHD
c +

ω2
∗piRcLp

4(1 + bi)V
2
A

, (11)

where Rc is the radius of the magnetic field curvature and Lp is the pressure gradient

scale length, and βMHD
c = k2

‖RcLp is the ballooning instability threshold based on the

MHD theory.

We now briefly summarize the physical processes of kinetic stabilization effects of

trapped electron dynamics and finite ion Larmor radii. In the substorm late growth

phase the temperatures of electrons and ions are of the same order and the electron

thermal velocity to be much larger than the ion thermal velocity. Because the frequency

of kinetic ballooning instability is on the order of the ion diamagnetic drift frequency,

its wave phase speed along the field line is usually much smaller than the electron ther-

mal speed, but much larger than the ion thermal speed. Therefore, with respect to the

parallel wave motion electrons move very rapidly along the field line with either transit

or bounce motion depending on the particle pitch angle. On the other hand, ions moves

very slowly with respect to the parallel wave motion and their parallel dynamics can

be considered as static. Moreover, electron and ion motions across magnetic field lines

are very different if the perpendicular wavelength is on the order of ion gyroradii; the

electron perpendicular motion is essentially the E × B drift motion because of small

mass, but the ion perpendicular motion is governed by both the E×B and polarization

drifts. The difference in electron and ion motion across magnetic field lines can cause

significant charge separation. In order to maintain the charge quasi-neutrality a parallel

electric field must be produced to accelerate (or decelerate) electrons to positions where

there is excess positive charge. A parallel electric field can easily accelerate (or decel-

erate) un-trapped electrons to change its density distribution. However, it is relatively

harder to change the trapped electron density distribution by a parallel electric field

because of their rapid bounce motion along the field lines. Thus, if the trapped electron

population is larger than the un-trapped electron population, an enhanced parallel elec-

tric field will be produced to move electrons to maintain charge quasi-neutrality. The

large parallel electric field will then drive an enhanced parallel current which can greatly

increase the stabilizing field line tension over the value expected from the MHD theory
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just like high-pressured water increases the tension of a hose. As a result, a much higher

βc than that based on the ideal MHD model is obtained with βc ≈ O(Ne/Neu)β
MHD
c ,

where Neu/Ne < 1 is the un-trapped electron fraction and βMHD
c is the critical β pre-

dicted by the ideal MHD theory. Therefore, for systems with a large fraction of trapped

electron population the ideal MHD ballooning mode theory underestimates the critical

β for instability and it is necessary to use the more complete kinetic theory.

The kinetic ballooning instability can interact with perpendicular ion motion via

wave-ion magnetic drift resonance because ion moves much slower than the wave along

the field lines. If ω ∼ ωdi, the wave-ion magnetic drift resonance can provide an addi-

tional channel to release the KBI free energy and the growth rate and critical β can be

modified. To fully evaluate the effect of wave-ion magnetic drift resonance, we need to

retain ion non-adiabatic responses in perturbed density and pressures. Numerical stud-

ies of KBI have been performed for tokamaks previously [Cheng(1982b), Cheng(1982a)]

and the results indicated that the effect of the wave-ion magnetic drift resonance is to

reduce βc by about 20% and the real frequency of KBI will increase to ω∗pi at critical β.

We expect the results for the magnetosphere to be qualitatively similar to the tokamak

case and the detailed numerical solutions will be presented in the future.

Another consequence of the wave-particle resonance is to produce a perturbed reso-

nant ion distribution in the velocity space centered around vy = vdi that oscillates with

KBI, where vy is the particle velocity in the duskward direction and vdi is the resonant

ion magnetic (∇B and curvature) drift velocity which is approximately equal to the

average drift velocity. As KBI grows to a large amplitude, the perturbed ion velocity

distribution enhances the duskward ion flux in one half of the wave phase and vice versa

for the other half of the wave phase. The resulting change in ion velocity distribution

gives rise to ∂fi/∂vy > 0 near vy ∼ vdi, and provides an additional free energy source

for exciting higher frequency instabilities.

One consequence of the wave-ion magnetic drift resonance is that as KBI grows

to a large value with δB/B ≥ 0.3 the perturbed resonant ion velocity distribution

has a positive slope near the duskward resonant ion magnetic drift velocity. This

can be clearly seen from the (ω − ωdi) resonance denominator in the perturbed ion

distribution. Because ωr ' ω∗pi/2, the wave-ion magnetic drift resonance will occur at

vdi = TiB×∇Pi/(2ePiB
2) ' vthiρi/2Lpi, where ρi is the ion Larmor radius and Lpi is

the ion pressure gradient scale length. Thus, |vdi| ∼ vthi for ρi ∼ Lpi.

4 Magnetic Reconnection

An alternative popular idea in the space plasma physics community regarding the mech-

anism responsible for the onset of substorm expansion phase is the magnetic reconnec-
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tion [Sweet(1958), Parker(1963), Petschek(1964)]. There are two elements in the mag-

netic reconnection process [Kulsrud(1998)]: one is the change of magnetic field topology,

and the other is the rate of energy conversion from magnetic field energy to plasma ther-

mal and flow energies. The study of the physical process of magnetic reconnection is

still an intensive ongoing activity in the plasma physics community. Some critical issues

of magnetic reconnection are still being pursued: how current sheets form and what

the current sheet topology is; how magnetic field reconnects in a 3D sheared magnetic

field; what causes reconnection (external force or internal waves or instabilities); what

the reconnection rate is and is it steady or spontaneous; and how electrons and ions

gain energy; etc.

Despite insufficient understanding of magnetic reconnection physics, there have been

constant attempts to propose the magnetic reconnection as the substorm onset mech-

anism. In particular, the near-earth neutral line model [Nagai and Kamide(1995)] has

gained popularity which postulates that the substorm expansion phase is caused by

magnetic reconnection in the near-earth plasma sheet. The near-Earth neutral line

model is based on the scenario that the plasma and magnetic field are pinched by

oppositely directed flows from north and south to form a current sheet in the equa-

torial near-Earth plasma sheet region. As magnetic reconnection occurs via plasma

dissipation, both Earthward and tailward flows are generated to transport plasma and

magnetic flux. In order for magnetic reconnection to be a viable mechanism for the

substorm onset, several serious difficulties of the near-Earth neutral line model asso-

ciated with both observational and theoretical constraints must be addressed. In the

following we discuss a few of these difficulties and how the kinetic ballooning instability

theory can naturally explain some critical substorm observations.

First, the effort by MHD simulations to find out whether magnetic reconnection

process can occur in the near-Earth plasma sheet region has been carried out. It is a

common conclusion that under normal solar wind and IMF conditions observed dur-

ing substorms magnetic reconnection does not occur in the near-earth plasma sheet

region. Even when magnetic reconnection occurs in the near-Earth plasma sheet under

extremely unrealistic solar wind and IMF conditions in the MHD simulations, the re-

connection region is quite broad (> 3 hours in local time and > 3RE in radial direction)

in the equatorial region [Ogino(1999)]. This is inconsistent with the observation that

the substorm onset is initiated in a small localized region of less than 1RE in radius in

the near-Earth plasma sheet at x ' −10RE around midnight. This corresponds to a

localized initial aurora brightening region of less than a few degrees wide in longitude

and less than one degree wide in latitude in the ionosphere. On the other hand, it is

natural for us to expect that the kinetic ballooning instability will be initiated in a

localized region in the near-Earth plasma sheet where the the plasma β is large, mag-
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netic curvature is strong and field line tension is weak so that the driving free energy

is maximized.

Secondly, the AMPTE/CCE observation of magnetic field data during substorms has

clearly identified a low frequency instability which is excited before substorm onset and

continues to evolve and develop into a strong plasma turbulence during the expansion

phase. There is no physical mechanism to explain the low frequency instability based on

the near-Earth neutral line model. On the other hand, the low frequency instability can

be best explained in terms of the kinetic ballooning instability which requires kinetic

effects of finite ion Larmor radii and trapped electron dynamics to properly understand

the high βc (≥ 50), the observed wave frequency and growth rate, and the associated

enhanced parallel electric field that is required to accelerate particle into and out of the

auroral ionosphere.

Thirdly, it is required that the magnetic reconnection process in the near-earth

plasma sheet region must produce observable high speed Earthward plasma flows per-

pendicular to the field lines before and during the substorm expansion phase. It relies

on the Earthward flow to carry plasma and magnetic flux to cause magnetic field dipo-

larization in the near-Earth plasma sheet region. The near-Earth neutral line model

advocates have been arguing that the existence of high speed flows is manifested by

the bursty bulk flows (BBF). However, more recent analysis of the GEOTAIL data has

indicated that there is no statistically favorable evidence of large perpendicular Earth-

ward flows within 25RE from the Earth in the night side [Machida(1999)]. Moreover,

recent detailed data analysis indicates that Earthward flows are either field-aligned ion

beams or some types of MHD perturbations without significant Bz flux.

5 Summary

In this paper we have identified a new scenario and physical processes of substorm

explosive growth phase, onset and current disruption observed by AMPTE/CCE. We

have found a low-frequency instability with a wave period of about 50−75 sec excited at

approximately 2 minutes before the current disruption onset, and we have interpreted

it as the kinetic ballooning instability (KBI). The β threshold (≥ 50) for exciting KBI

is at least 102 larger than that based on the ideal MHD theory because of the kinetic

effects of trapped electron dynamics and finite ion Larmor radii which give rise to

a large parallel electric field and hence a parallel current that greatly enhances the

stabilizing effect of field line tension. With the KBI theory we are able to explain

the enhanced duskward ion flux which occurs only during the explosive growth phase

(≈ 30 sec) and can excite higher frequency instabilities such as the cross-field current

instabilities (CCI) [Lui(1996)]. Thus, our new substorm scenario emphasizes KBI which
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can naturally account for the features of the explosive growth phase and the initiation

of current disruption through a combination of KBI and higher frequency instabilities

such as CCI. We have also discussed the difficulties of explaining the substorm onset by

the magnetic reconnection process as proposed in the near-Earth neutral line model.

Finally, we point out that even though progress has been made in understanding

the substorm onset mechanism from the model of kinetic ballooning instability, more

works are still needed to carry out a conclusive demonstration of substorm process by

both theory and observation.
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